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A steady flow of a bubble gas-liquid mixture in a nozzle having a circular cross section has been investi-
gated. The possibility of realization of superhigh temperatures and pressures in the gas phase of the mixture
in the region near the smallest cross section of the nozzle has been analyzed. The influence of the initial ra-
dius of the flow and the volume content of bubbles, determining the volumetric rate of flow of the liquid sup-
plied to the nozzle, on the pattern of the flow has been considered.

Introduction. At present, great interest is being shown in the problem on obtaining of high pressures and
temperatures in the gas phase of bubble liquids. An efficient method of solving this problem, tested in practice, is ex-
citation of vibrations of bubbles or a cluster of bubbles by a pressure pulse [1]. Galimov et al. of [2], on the basis of
an experimental investigation of a benzene flow in a nozzle, occurring with a cavitation, concluded that diamondlike
systems can be obtained under superhigh pressures created in bubbles.

Consequently, the study of the mechanisms of formation of such flows of vapor-gas-liquid mixtures, in which
the gas in the bubbles is subjected to extremum pressures and temperatures, can offer the prospect, unlike the methods
of pulse action on "immovable" bubbles, of realization of continuous technological processes under superhigh pressures
and temperatures.

Formulation of the Problem and Basic Equations. We consider a flow of a monodisperse bubble gas-liquid
mixture in a nozzle, for which the initial parameters and the flow velocity at the inlet to the nozzle can be prescribed.
A mathematical model of the indicated flow is constructed on the assumption that, in each elementary volume, all the
bubbles are spherical and have equal radii, the rates of motion of the phases are equal, the viscosity and heat conduc-
tion are significant only in the interphase interaction, in particular, in the process of bubble pulsations, phase transi-
tions are absent, and bubbles do not coalesce and do not break. The friction of the flow on the walls of the channel
is disregarded.

In line with these assumptions, we write the system of macroscopic equations for the mass of the liquid, the
number of bubbles, and the pulses and pressures in the bubbles in a quasi-steady flow of the mixture being considered
in the quasi-one-dimensional approximation
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Assuming that the radial motion of bubbles proceeds in accordance with the Rayleigh–Lamb equation, we obtain
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It is assumed that the liquid is incompressible and the gas is calorically perfect: ρliq
0  = const; pg = ρg

0RTg. The heat
flow q is defined by the approximate finite relation [3]
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Using the equations of state and continuity for the temperature of the gas in the bubbles, we obtain
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Method of Numerical Calculation. For numerical analysis of the problem on a steady bubble-liquid flow in
a nozzle, we rearrange Eqs. (1) and (2) as
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Using the relation between the number of bubbles and their concentration
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we write the following relation for the volume content of the gas phase in an arbitrary cross section of the nozzle:
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Results of Calculations. In a bubble liquid flowing through a nozzle there can arise nonlinear vibrations of
bubbles because of the decrease in the pressure in the narrowing part of the nozzle and the inertial radial motion of
bubbles in the region of the smallest cross section. The intensity of these vibrations is determined by the charac-
teristics of the gas-liquid mixture and the minimum pressure attained at the neck of the nozzle.

A decrease in the pressure of the liquid in the narrowing part of the nozzle causes the bubbles to grow.
The pressure of the liquid phase at the neck of the nozzle reaches a minimum value and begins to increase in the
broadening part of the nozzle. In this case, the gas bubbles, growing in the narrowing part of the nozzle, pass
through the equilibrium state at the smallest cross section and continue to grow because of the inertial motion of
their walls and reach maximum sizes in the broadening part of the nozzle near the neck. Under the action of the in-
creasing pressure in the liquid, the bubbles in the broadening region collapse abruptly. In the process of collapse,
bubbles pass again through the equilibrium state and, in doing so, decrease to minimum sizes, which lead to a large
increase in the pressure of the gas in the bubbles and a new growth of them due to the difference between the pres-
sures of the gas in the bubbles and in the liquid at the instant the compression of the bubbles is maximum. Then
these nonlinear vibrations of bubbles in the broadening part of the nozzle damp gradually due to the dissipation aris-
ing as a result of the heat exchange and the viscosity of the liquid. In this case, as the calculations have shown, the
average pressure and temperature of the gas in the bubbles in the process of their collapse reach values that are
much larger than the initial ones.
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The numerical investigation was carried out for a nozzle (Fig. 1) having a variable circular cross section of
length 0.15 m. The diameters of the ends are equal to 3.57⋅10−2 m. The smallest cross section is at a distance of
2.3⋅10−2 m from the inlet to the nozzle, where z = 0, and its diameter is equal to 2.52⋅10−2 m.

In the calculations, water was used as the liquid and air was used as the gas phase. We considered a bubble-
liquid flow, in which the bubbles had an initial radius a0 falling within the range 3⋅10−5–2⋅10−4 m, and the initial vol-
ume gas content αg0 ranged from 5⋅10−5 to 2⋅10−4. At the inlet to the nozzle, the pressure of the phases and the
velocity of the liquid flow were prescribed. In all cases, the temperature of the liquid was assumed to be equal to
T0 = 300 K.

A liquid flow with strong nonlinear vibrations of bubbles is realized when the pressure at the neck of the
nozzle decreases to several thousandths of an atmosphere and is determined by the velocity of the flow at the inlet to
the nozzle and the ratio between the area of the input cross and the area of the cross section at the neck of the nozzle.
An increase in the velocity of the flow to the limiting value, at which the pressure of the liquid at the neck tends to
zero, gives rise to the largest vibrations of the bubbles and causes the pressure and temperature of the gas in the bub-
bles to increase to enormous values at the instants they are compressed to a maximum degree. For example, at the in-
stants the bubbles of radius a0 = 9⋅10−5 m in a gas-liquid mixture with a volume gas content αg0 = 10−4 are
compressed to a maximum degree at pressures of the phases pliq0 = pg0 = 0.2 MPa and a liquid-flow velocity v0 =

Fig. 1. Profile of a nozzle.

Fig. 2. Calculated distributions of the dimensionless radius of the bubbles and
the gas pressure and temperature along the length of the nozzle: a) a0 =
9⋅10−5 m, αg0 = 10−4, v0 = 11.46 m ⁄ sec, pg

m = 32 MPa, Tg
m = 2900 K; b)

a0 = 2⋅10−4 m, αg0 = 2⋅10−4, v0 = 11.45 m ⁄ sec, pg
m = 200 MPa, Tg

m = 5900
K; c) a0 = 3⋅10−5 m, αg0 = 10−4, v0 = 11.45 m ⁄ sec.
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11.46 m ⁄ sec at the inlet to the nozzle, the pressure and temperature of the gas in the bubbles reach pg
m = 32 MPa and

Tg
m = 2900 K (Fig. 2a). The dashed curve corresponds to the pressure in the liquid and the solid line corresponds to

the pressure of the gas in the bubbles.
When a bubble-liquid flow at the inlet to the nozzle has a maximum velocity at which the pressure of the

liquid at the smallest cross section of the nozzle is close to zero, the highest pressures and temperatures of the gas
phase (exceeding 100 MPa) are realized in larger bubble systems (a0 ≥ 10−4 m). This is explained by the fact that, in
this case, the specific surface through which the gas in the bubbles and the liquid exchange heat is smaller and the
bubbles in the compression stage behave practically adiabatically (Fig. 2b).

In liquids with bubbles having smaller initial radii (a0 ≤ 5⋅10−5 m), the vibrations of bubbles are weaker and
superhigh pressures and temperatures are practically not realized in them because the surface forces of these liquid are
stronger (Fig. 2c).

Our calculations have shown that the characteristic zone of vibrations of bubbles in a nozzle is determined by
their initial sizes, and this zone broadens with increase in the volume content of the gas phase in a mixture. Note that
the values presented for the pressure and temperature distributions along the nozzle correspond to the values averaged
over a bubble. What actually happens is that the process of inertial compression of each individual bubble represents
a motion accompanied by nonlinear gas-dynamic effects, such as formation of shock waves. Therefore, in the central
zones of the bubbles, much higher temperatures and pressures can arise at certain instants of time, as compared to the
temperatures and pressures obtained by us.

Conclusions. The numerical analysis performed by us for a flow of a bubble gas-liquid mixture in a nozzle
has shown that superhigh pressures and temperatures can be obtained in the gas phase of an initially "cold" bubble
system as a result of the initiation of intense nonlinear vibrations of bubbles in the broadening part of the nozzle near
its smallest cross section. It has been established that, in the case where a liquid flow has a maximum velocity at the
inlet to the nozzle, the highest temperatures and pressures are realized in the gas of the bubbles with a radius exceed-
ing 10−4 m because of their practically adiabatic behavior in the process of pulsations. The calculation data presented
allow the conclusion that the bubble liquid–nozzle system can be used for realization of continuous technological proc-
esses occurring with superhigh temperatures and pressures.

This work was carried out with financial support from a grant of the President of the Russian Federation
(MK-1815.2005.1), a grant of the Russian Foundation for Basic Research (projects No. 04-01-97513-r_ofi), and a grant
of the INTAS (Nr. 05-1000008-7921).

NOTATION

a, radius of a bubble, m; cg, specific heat of the gas, J ⁄ (kg⋅K); n, number of bubbles in a unit volume,
m−3; Nu, Nusselt number; pi, pressure of phases, Pa; Pe, Peclet number; q, intensity of the heat flow between the liq-
uid and the gas in a bubble referred to a unit area of the bubble surface, W ⁄ m2; R, universal gas constant,
J ⁄ (mole⋅K); Rn, radius of a nozzle, m; S, area of a cross section of the nozzle, m2; T0 = const, temperature of the
liquid, K; Tg, temperature of the gas, K; v, velocity of a liquid flow, m ⁄ sec; w, radial velocity of bubbles, m ⁄ sec; z,
spatial coordinate, m; αi, volume content of phases (dimensionless); γ, adiabatic index for the gas; λg, heat conductiv-
ity of the gas, W ⁄ (m⋅K); ν(v), kinematic viscosity of the liquid, m2 ⁄ sec; ν(T), thermal diffusivity of the gas, m2 ⁄ sec;
ρi

0, true densities of the phases, kg ⁄ m3; σ, surface-tension coefficient, N ⁄ m. Subscripts: 0 (overhead), true value of a
parameter; 0 (beneath), value of a parameter at the inlet of the nozzle; m, maximum value of a parameter; n, nozzle;
liq, liquid; g, gas.
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